НПО "РАСКАТ"

ЦИФРОВАЯ СИСТЕМА КОММУТАЦИИ'ОМЕГА'

Эксплуатационная документация

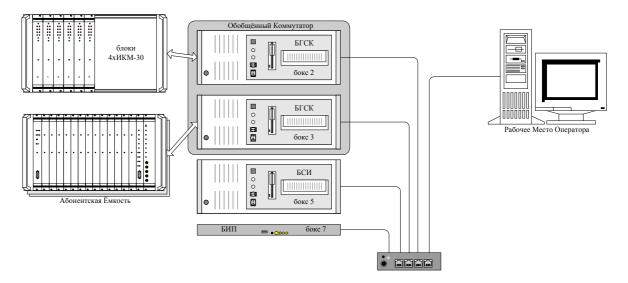
Доступ к NGN в ЦАТС "Омега"

Доступ к NGN в ЦАТС "Омега"

Содержание

1. ОБЩИЕ СВЕДЕНИЯ	3
2. ОПИСАНИЕ ФУНКЦИОНАЛЬНЫХ УСТРОЙСТВ	5
2.1. БОКС СИГНАЛИЗАЦИИ	6
2.2. Бокс шлюзования.	7
2.3. Пограничный бокс.	8
2.4. Замечания	9
3. РАБОТА С ОБОРУДОВАНИЕМ NGN ДОСТУПА	10
3.1. Построение сети	10
3.2. Администрирование	12
3.3. ФАЙЛОВЫЙ ОБМЕН	
4. КОНФИГУРИРОВАНИЕ	14
4.1. Конфигурирование абонентов.	14
4.2. КОНФИГУРИРОВАНИЕ ГРУПП ПОЛЬЗОВАТЕЛЕЙ.	14
5. РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ	
5.1. Дооснащение	
5.2. НОВАЯ УСТАНОВКА.	
5.3. COPM	15

1. Общие сведения


Доступ к NGN (Next Generation Network) в ЦАТС "Омега" осуществляется в рамках общих принципов построения распределённой системы.

Функционально станция разбита на ряд самостоятельных блоков, каждый из которых выполняет отдельную задачу. Это могут быть задачи маршрутизации, коммутации, хранения информации, реализации ДВО и т.д.

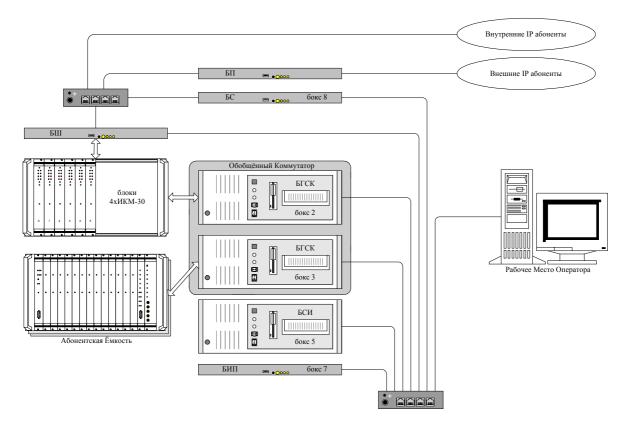
В зависимости от масштаба системы каждый функциональный блок может находиться в отдельном боксе (нескольких боксах) или несколько функциональных блоков могут находиться в одном боксе.

В случае, если ЦАТС "Омега" используется только для коммутации каналов, в её состав могут входить следующие боксы (и соответствующие им функциональные блоки):

- Активный бокс (КЦК, БГСК, БКУ);
- Бокс Служебной информации (БСИ);
- Бокс Интеллектуальной Платформы (IN).

Если в системе присутствует ОДИН активный бокс, то он может выполнять одновременно и функции БСИ.

Возможно совмещение функций Бокса Интеллектуальной Платформы и Бокса Служебной Информации в том случае, когда объём выполняемой обоими функциональными устройствами работы невелик.


Боксы связаны между собой каналами передачи разговорного трафика и каналами передачи служебной информации. Более подробно о работе ЦАТС "Омега" можно узнать из руководства оператора.

Дополнительно в систему обычно бывает включено рабочее место оператора (РМО), с которого производится конфигурирование системы и осуществляется контроль за ее функционированием.

В системе может присутствовать любое количество рабочих мест оператора.

В случае, если ЦАТС "Омега" используется для связи с NGN, в её состав могут входить наряду с вышеупомянутыми следующие боксы (и соответствующие им функциональные блоки):

- Бокс сигнализации (БС).
- Бокс шлюзования (БШ).
- Пограничный бокс (ПБ).

Возможно совмещение функций Бокса Сигнализации и Бокса Шлюзования в том случае, когда объём выполняемой обоими функциональными устройствами работы невелик.

2. Описание функциональных устройств

Как отмечалось выше, в случае, если ЦАТС "Омега" используется для доступа с NGN, в её состав могут входить следующие боксы (и соответствующие им функциональные блоки):

- Бокс сигнализации (БС).
- Бокс шлюзования (БШ).
- Пограничный бокс (ПБ).

Коротко рассмотрим каждый из этих боксов.

2.1. Бокс сигнализации

Бокс Сигнализации (БС) выполняет две основные функции.

Он служит конвертором протоколов между IP абонентами и ЦАТС "Омега".

C одной стороны от BC – сеть пакетной передачи данных со своими протоколами, в том числе BP. C другой стороны – обобщённый коммутатор с внутренним протоколом C

БС организует двустороннее преобразование SIP во внутренний протокол и обратно.

Таким образом для станции обслуживание IP абонентов ничем не отличается от обслуживания любых других абонентов.

В ЦАТС "Омега" обслуживание вызовов — обработка вызова на входе и выходе обобщённого коммутатора, маршрутизация, коммутация и т.д. — строго соотнесено с соединительными линиями. (см. Руководство оператора —> Глава 2 Конфигурирование обобщённого коммутатора —> §2.1.1 Основные понятия).

В целях обеспечения нормальной работы системы для вызовов к/от IP-абонентов в обобщённом коммутаторе создаются так называемые "условные" соединительные линии. Условность их состоит в том, что за ними не стоит реальной физики.

Вызов, поступивший со стороны БС привязывается к конкретной условной СЛ. После чего, дальнейшая обработка собственно вызова происходит аналогично обработке любого другого вызова в системе.

При необходимости выдачи вызова из обобщённого коммутатора в БС занимается условная СЛ, которая связана с текущим вызовом для организации правильной обработки.

В том случае, когда связь происходит между двумя ІР-абонентами, в обслуживании вызова принимает участие только условные СЛ.

Если же связь осуществляется между IP-абонентом и абонентом ТФОП, то должна быть задействована так-же и реальная СЛ, она соединяет Бокс Шлюзования (БШ) с активным боксом обобщённого коммутатора.

Кроме того, БС является для SIP-устройств сервером регистрации. Регистрация необходима для аутентификации пользователей устройств и для определения адресов устройств в случае входящих вызовов.

2.2. Бокс шлюзования.

Бокс шлюзования (БШ) представляет собой устройство, в котором происходит преобразование пакетного представления информации в ТDM-представление и обратно.

БШ соединен с обобщённым коммутатором с помощью ИКМ-трактов.

Один БШ может поддерживать от одного до четырёх трактов ИКМ, что обеспечивает до 120 одновременных соединений между IP-абонентами и ТФОП-абонентами. Если требуется больше 120 одновременных соединений, то в систему включается соответсвующее количество Боксов шлюзования.

Управление работой БШ осуществляется со стороны Бокса Сигнализации.

Все решения по обработке вызова принимаются в обобщённом коммутаторе, вне зависимости от типа участвующих в нём абонентов. Решение же об использовании БШ принимается в БС в процессе обслуживания вызова.

Если соединение происходит между IP-абонентом и абонентом ТФОП, то необходимо задействование в рамках соединения БШ.

Информация о вызове, поступившем со стороны пакетной сети в БС привязывается к конкретной условной СЛ. Далее происходит обработка этого вызова в обобщённом коммутаторе. В случае, если связь осуществляется между IP-абонентом и абонентом ТФОП, то обобщённый коммутатор принимает решение задействовать СЛ, соединяющую БШ с активным боксом обобщённого коммутатора. Такие СЛ называются шлюзовыми СЛ. Основное их отличие от "нормальных" СЛ то, что по ним передаются только данные. Сигнализация связанная с передачей этих данных передаётся совершенно отдельно, через БС.

Обобщённый коммутатор находит свободную шлюзовую линию и информирует об этом БС. БС организует взаимодействие между SIP-устройством пользователя и Боксом шлюзования, что обеспечивает появление потока пакетов с разговорным трафиком между этими устройствами.

2.3. Пограничный бокс.

Пограничный Бокс (БП) служит для разделения внешней и внутренней сетей пакетной передачи данных.

Таким образом, необходимость в наличии БП возникает, когда оператору требуется обрабатывать вызовы не только между собсвенными IP-абонент ами или собственными IP-абонентами и ТФОП, но и между собственными абонентами и IP-абонентами, находящимися во внешней пакетной сети.

Обычно оператор заключает соглашение с опорной IP-станцией, находящейся во внешней сети и направляет на эту станцию (или получает с неё) часть междугороднего/международного/местного трафика.

Поскольку оператор обычно назначает SIP-устройствам собственных IP-абонентов так называемые внутренние адреса, которые нельзя выпускать во внешнюю сеть, одна из задач Пограничного Бокса как раз и состоит в том, чтобы внутренняя адресация не проникала за пределы сети оператора, а заменялась внешним IP-адресом БП. Другая задача БП — оградить сеть оператора от нежелательных воздействий извне.

2.4. Замечания

Фактически все упомянутые выше устройства (БС, БШ и БП) являются интерфейсом между сетью пакетной передачи данных и обобщённым коммутатором ЦАТС "Омега".

В случае, если сеть IP-абонентов невелика, например их несколько сотен, и им достаточно одного потока ИКМ для шлюзования, то функциональность Бокса Сигнализации и Бокса Шлюзования может быть объединена в одном боксе, который в этом случае называется Боксом Сигнализации и Шлюзования (БСШ).

В настоящий момент очень сильно востребована функциональность, связанная с предоставлением пользователям специализированных дополнительных видов обслуживания (СДВО) и соответсвующих WEB-интерфейсов, доступных пользователям.

В коммутационной системе "Омега" на данный момент реализована услуга (при наличии NGN доступа), которая обычно называется либо Centrex, либо "Виртуальный офис".

Она позволяет группировать пользователей с целью предоставления им специфической функциональности типа сокращенной нумерации, общего вызывающего номера и т.д. Имеется так же WEB-интерфейс, который позволяет администратору группы управлять соответсвующей группой. Вся такого рода функциональность как имеющаяся, так и будущая сосредотачивается в Боксе сигнализации.

Следует заметить, однако, что ВСЕ вызовы (в том числе и внутри группы), по прежнему обрабатываются только в обобщённом коммутаторе.

В оборудовании NGN доступа никакой маршрутизации не происходит.

3. Работа с оборудованием NGN доступа

3.1. Построение сети

Телекоммуникационная система "Омега" схематично представляет собой набор устройств — БГСК, БСИ, БИП и РМО, обменивающихся сигнализацией по Ethernet-сети. Эта сеть называется внутренней сетью системы.

Для повышения надежности внутренняя сеть может быть задублирована. При наличии NGN-доступа все дополнительные боксы снабжаются Ethernet-адаптерами для включения во внутреннюю сеть. Брандмауэры этих боксов настраиваются так, что они разрешают полный доступ к ним со стороны внутренней сети.

Таким образом, РМО, имеющее доступ ко внутренней сети, имеет полноценный доступ ко всем боксам коммутационной системы, в том числе и к боксам NGN-доступа.

В боксах NGN-доступа разрешён полный доступ только со стороны внутренней сети, а со стороны остальных сетей (рассматриваемых далее) эти боксы максимально защищены.

Внутренняя сеть всегда имеет адресацию 192.168.1.ххх.

Все боксы NGN-доступа оборудованы Ethernet-адаптерами для включения в защищенную сеть. (Её ещё называют демилитаризованной сетью.) В эту сеть также включаются SIP-устройства пользователей.

Для защиты боксов NGN-доступа от этой сети, брандмауэры боксов сконфигурированы следующим образом.

- Бокс Сигнализации. Разрешен порт 5060(udp) сигнализация SIP-устройств пользователей. Разрешен порт 9080(tcp) WEB-интерфейс для пользователей.
- Бокс Шлюзования. Разрешен порт 6060(udp) SIP-сигнализация шлюза.
 Порты 10000-20000(udp) для обеспечения RTP-потоков между SIP-устройствами пользователей и шлюзом.
- Пограничный Бокс. Разрешен порт 5060(udp) SIP-сигнализация между защищённой сетью и внешними SIP-устройствами. Порты 28000-29023(udp) для обеспечения RTP-потоков между внутренними и внешними SIP-устройствами. Защищённая сеть обычно имеет адресацию 10.XXX.XXX.XXX.

Пограничный бокс имеет Ethernet-адаптер для включения во внешнюю сеть. Разрешен порт 5060(udp) — SIP-сигнализация между защищённой сетью и внешними SIP-устройствами. Порты 28000-29023(udp) для обеспечения RTP-потоков между внутренними и внешними SIP-устройствами.

Через Пограничный Бокс по согласованию с провайдером также осуществляется удаленный доступ из Центра Техобслуживания. Для этого в БП открыт порт 22(tcp). Доступ осуществляется по зашифрованному каналу (RSA-шифрование, длина ключа 2048 бит).

При отсутствии в системе Пограничного Бокса, удалённый доступ по согласованию с провайдером может осуществляться либо через дополнительный сетевой адаптер Бокса Интеллектуальной Платформы, либо через дополнительный сетевой адаптер РМО. Уровень защищенности доступа при этом аналогичен уровню защищенности при доступе через Пограничный Бокс.

3.2. Администрирование

Администрирование активных боксов с РМО производится при помощи программы Teraterm, которая создает удалённые консоли в администрируемом боксе.

Администрирование БСИ, БИП, БС, БШ и ПБ с РМО производится при помощи программы VNCclient. Оператор получает доступ к удалённому рабочему столу соответствующего бокса.

При поставке системы установлены следующие пароли администратора:

- БИП "platform";
- БСИ "abonent";
- GC-"convertor";
- δIII "asterisk";
- ΠB "border".

Если на рабочем столе удалённого бокса требуется запуск утилиты файлового менеджера (типа "NortonCommander"), то запускается консоль и уже в ней запускается "Midnight Commander" вводом команды mc.

Доступ к WEB-интерфейсам Бокса Сигнализации производится с помощью программы Internet Explorer.

3.3. Файловый обмен

Файловый доступ из РМО к БГСК, БСИ, БС, БШ и ПБ производится по ftp с использованием возможностей файлового менеджера.

В активных боксах имеется полный доступ на запись и чтение ко всем директориям, во все остальные боксы доступ имеется только на чтение, кроме директории / tmp.

То есть, если требуется записать файл в какой-нибудь бокс, кроме активного, то этот файл сначала записывается в директорию / tmp, а потом оператор должен зайти на удалённый рабочий стол этого бокса и переписать файл в нужное место.

Во всех случаях при работе с файлами необходимо учитывать ограничения доступа к файлам. При необходимости соответствующие коррекции можно внести путем администрирования по удалённому доступу.

4. Конфигурирование.

4.1. Конфигурирование абонентов.

Основная часть конфигурирования абонентов производится в штатном ПО коммутационной системы "Омега" (в обобщённом коммутаторе).

В боксах NGN-доступа дополнительно конфигурируются только свойства абонентов, специфичные для пакетной коммутации.

Так как SIP-устройство какого-нибудь IP-пользователя может перемещаться в пределах сети, то существует таблица регистрации пользователей, в которой фиксируется текущий IP-адрес.

Чтобы пользователь мог зарегистрироваться, необходимо, чтобы в таблице регистрации существовала запись с номером пользователя.

Для удобства работы оператора все формы ввода снабжены подсказками.

Запуск конфигурирования абонентов производится из Internet Explorer'a.

URL-http://convertor:9080/sipconfig.

В поставке имеется пользователь admin с паролем admin.

4.2. Конфигурирование групп пользователей.

Группы пользователей конфигурируются из Internet Explorer'a.

URL-http://convertor:9080/addresslist.

При поставке имеется пользователь admin с паролем admin.

5. Рекомендации по использованию.

NGN-доступ коммутационной системы "Омега" является хорошо масштабируемым решением в следующих ситуациях.

5.1. Дооснащение.

Дооснащение стоящих на сети коммутационных систем "Омега" возможностями IP-телефонии.

В этом случае состав оборудования может сильно варьироваться в зависимости от вида и объема поставленных задач.

- Небольшое количество IP-пользователей (до 1000) с основным объёмом трафика, приходящимся на вызовы между IP-пользователями, без выхода на опорную IP-станцию.
 - В этом случае будет достаточно БСШ с одним или двумя Е1.
- Тоже самое, что и в предыдущем случае, но с выходом на опорную IP-станцию.
 - К БСШ с одним или двумя Е1 добавляется ПБ.
- При большем количестве IP-пользователей БСШ разбивается на БС и БШ.
- IP-пользователи тяготеют к взаимодействию с ТФОП. В этом случае используются отдельно БС и БШ, причем в БШ используется до 4-х потоков Е1. Если требуется большее число потоков Е1, то добавляется ещё БШ.

5.2. Новая установка.

Установка новых станций с возможностями ІР-телефонии.

Такая установка особенно интересна, если требуется несколько небольших станций с IP-пользователями с централизованным управлением пользователями и централизованным сбором трафика.

5.3. COPM.

Во всех предыдущих конфигурациях подрузамевалось, что все вызовы ІР-пользователей обслуживаются СОРМ'ом, имеющимся в ЦАТС "Омега".

Однако существует возможность дооснащения развернутых систем SIP-телефонии системой "Омега" в составе БСШ и БКУ, позволяющей обеспечить СОРМ для IP-пользователей уже имеющейся сети.